TAVR Clinical Trials

Alan C. Yeung, MD Li Ka Shing Professor of Medicine Chief (Clinical), Division of Cardiovascular Medicine Stanford University School of Medicine

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation/Financial Relationship

- Grant/Research Support
- Scientific Advisory Board
- Executive Physician Council

Company

- Edwards Lifesciences, Abbott
- Medtronic, Abbott
- Boston Scientific Corp

TAVR Clinical Evidence in 8 min

- The beginning....
- Clinical Trial Data for benchmarking
- What is hot?

The Andersen Stent-Valve (1989)

2000-2002: The Sheep Era

CERA (Centre d' Experimentation et de Recherche Appliquée) Institut Monsouris, Paris, France

PVT - Cadaver Heart Study at AFIP

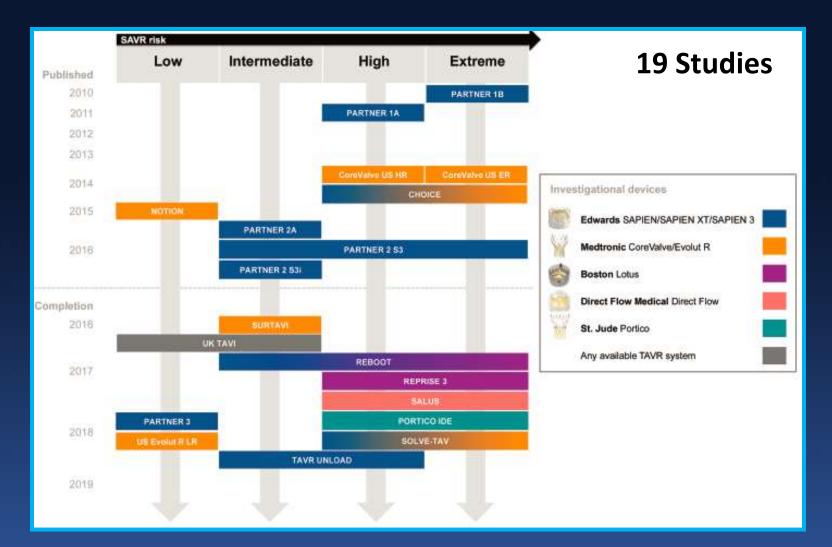
Dr. Alain Cribier First-in-Man PIONEER

Percutaneous Transcatheter Implantation of an Aortic Valve Prosthesis for Calcific Aortic Stenosis

First Human Case Description

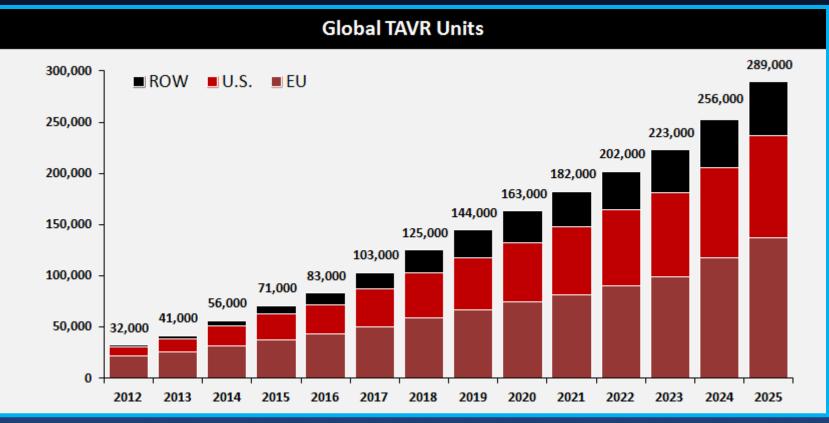
Alain Cribier, MD; Helene Eltchaninoff, MD; Assaf Bash, PhD; Nicolas Borenstein, MD; Christophe Tron, MD; Fabrice Bauer, MD; Genevieve Derumeaux, MD; Frederic Anselme, MD; François Laborde, MD; Martin B. Leon, MD

Conclusions— Nonsurgical implantation of a prosthetic heart valve can be successfully achieved with immediate and midterm hemodynamic and clinical improvement.


April 16, 2002

TAVR – The Early Skeptics

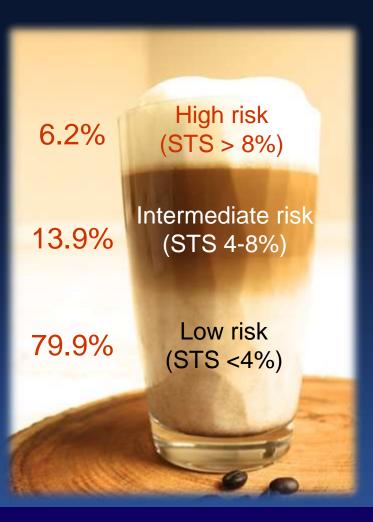
- Strokes
- Aortic rupture
- Coronary occlusion
- Mitral valve injury
- Valve instability embolization
- Para-valvular regurgitation
- Vascular complications
- Valve durability
- Technical challenges insurmountable


This is a crazy project that will fail!

TAVR Clinical Evidence

Capodanno D and Leon MB. EuroIntervention 2016;12:Y1-Y5.

Estimated Global TAVR Growth


SOURCE: Credit Suisse TAVI Comment –January 8, 2015. ASP assumption for 2024 and 2025 based on analyst model. Revenue split assumption in 2025 is 45% U.S., 35% EU, 10% Japan, 10% ROW

In the next 10 years, TAVR growth will increase X4!

TVT CHICAGO Transcatheter Valve Therapies (TVT) A Multidisciplinary Heart Team Approach

STS database 2002-2010 (141,905 pts)

Since 2007, in the U.S., >15,000 patients have been enrolled in FDA studies (including 6 RCTs) with multiple generations of two TAVR systems!

PARTNER 5-year FU in Lancet (March, 2015)

5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial

Samir R Kapadia, Martin B Leon, Raj R Makkar, E Murat Tuzcu, Lars G Svensson, Susheel Kodali, John G Webb, Michael J Mack, Pamela S Douglas, Vinod H Thourani, Vasilis C Babaliaros, Howard C Herrmann, Wilson Y Szeto, Augusto D Pichard, Mathew R Williams, Gregory P Fontana, D Craig Miller, William N Anderson, Jodi J Akin*, Michael J Davidson†, Craig R Smith, for the PARTNER trial investigators

5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial

Michael J Mack; Martin B Leon, Craig R Smith, D Craig Miller, Jeffrey W Moses, E Murat Tuzcu, John G Webb, Pamela S Douglas, William N Anderson, Eugene H Blackstone, Susheel K Kodali, Raj R Makkar, Gregory P Fontana, Samir Kapadia, Joseph Bavaria, Rebecca T Hahn, Vinod H Thourani, Vasilis Babaliaros, Augusto Pichard, Howard C Herrmann, David L Brown, Mathew Williams, Jodi Akin*, Michael J Davidson†, Lars G Svensson, for the PARTNER 1 trial investigators

PARTNER 5-year FU in Lancet (March, 2015)

5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial

The risk of all-cause mortality at 5 years was 71.8% in the TAVR group versus 93.6% in the standard treatment group (hazard ratio 0.50, 95% CI 0.39–0.65; p<0.0001).

5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial

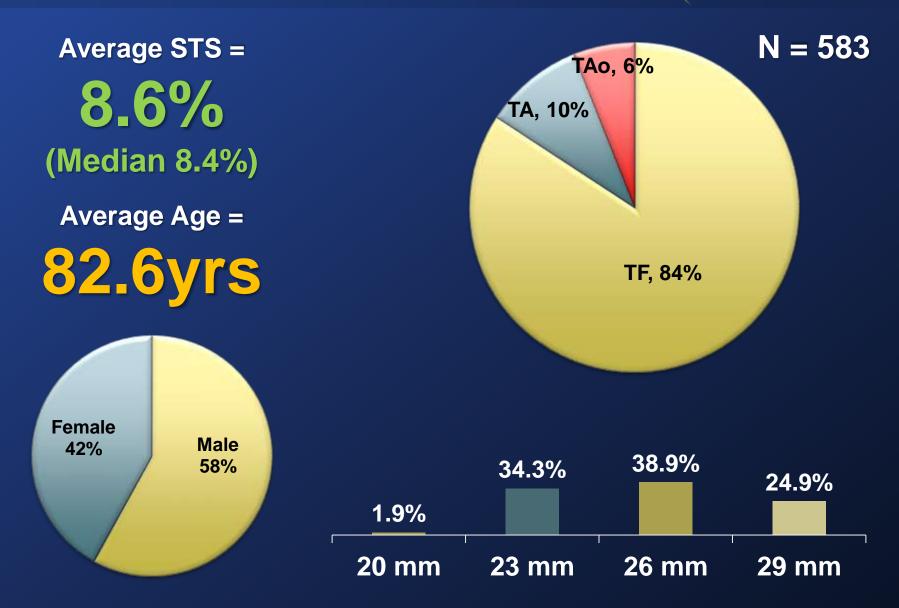
Michael J Mack; Martin B Leon, Craig R Smith, D Craig Miller, Jeffrey W Moses, E Murat Tuzcu, John G Webb, Pamela S Douglas, William N Anderson, Eugene H Blackstone, Susheel K Kodali, Raj R Makkar, Gregory P Fontana, Samir Kapadia, Joseph Bavaria, Rebecca T Hahn, Vinod H Thourani, Vasilis Babaliaros, Augusto Pichard, Howard C Herrmann, David L Brown, Mathew Williams, Jodi Akin*, Michael J Davidson†, Lars G Svensson, for the PARTNER 1 trial investigators

PARTNER 5-year FU in Lancet (March, 2015)

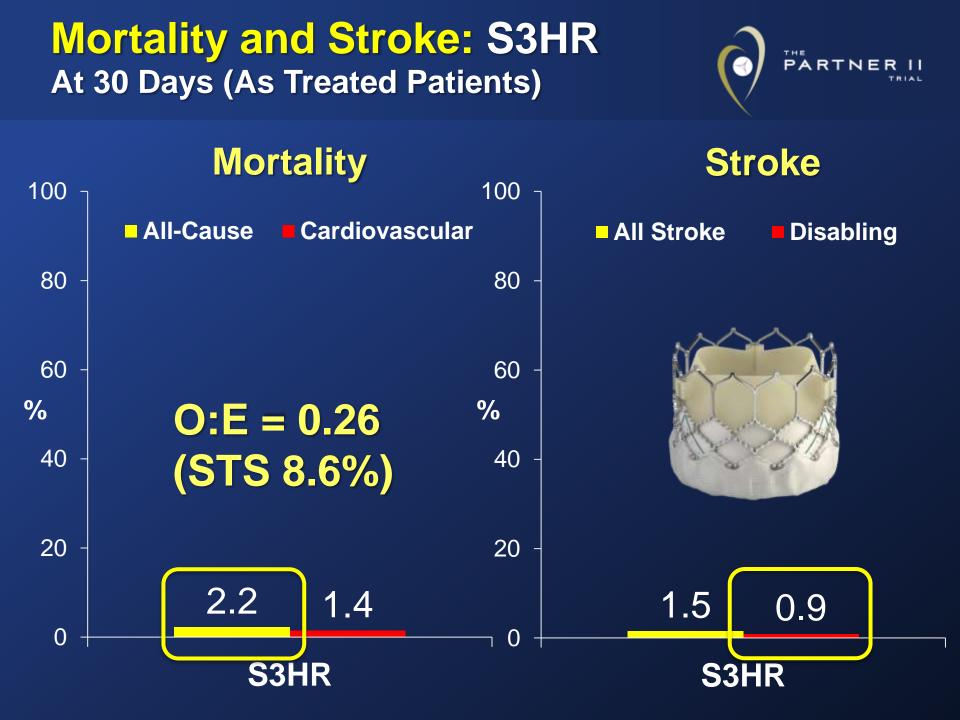
5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial

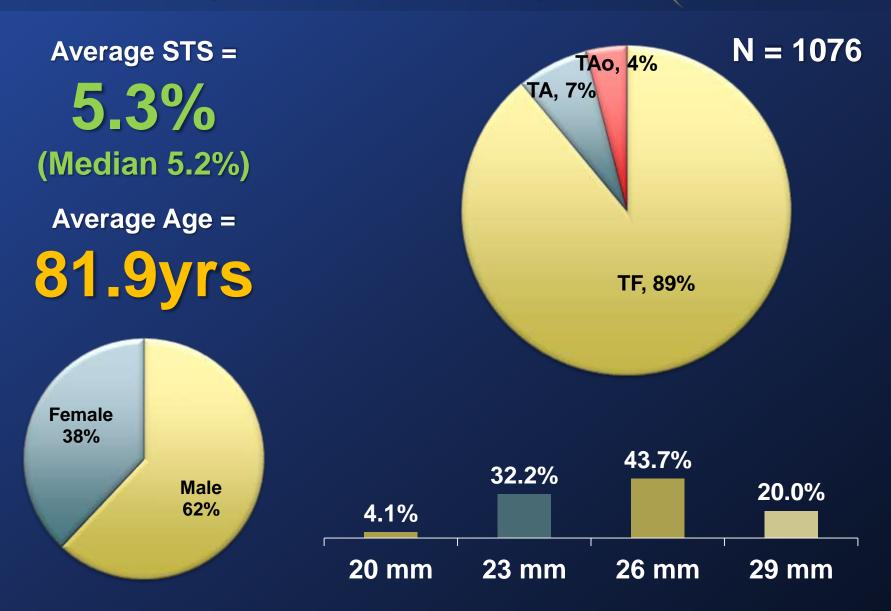
The risk of all-cause mortality at 5 years was 71.8% in the TAVR group versus 93.6% in the standard treatment group (hazard ratio 0.50, 95% CI 0.39–0.65; p<0.0001).

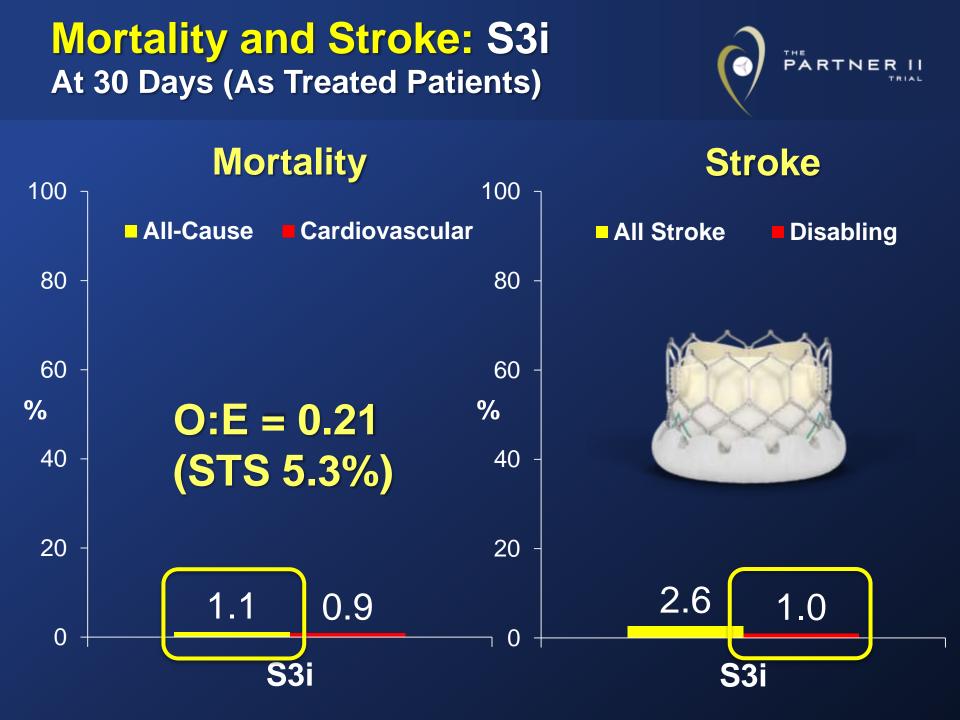
5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial


At 5 years, risk of death was 67.8% in the TAVR group compared with 62.4% in the SAVR group (hazard ratio 1.04, 95% CI 0.86-1.24; p=0.76).

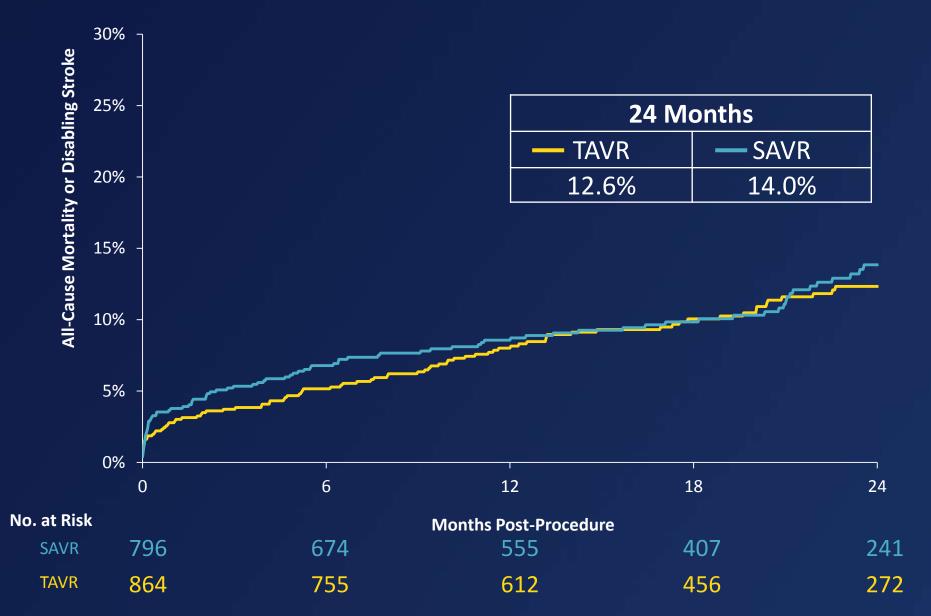
Evolution of the Edwards Balloon-Expandable Transcatheter Valves




Baseline Patient Characteristics S3HR Patients (n=583 at 29 sites)


PARTNE

Baseline Patient Characteristics S3i Patients (n=1076 at 51 sites)


PARTNE

Transcatheter Aortic Valve Replacement with a Self-Expanding Prosthesis or Surgical Aortic Valve Replacement in Intermediate-Risk Patients: First Results from the SURTAVI Clinical Trial

> Michael J. Reardon, MD For the SURTAVI Investigators

All-Cause Mortality or Disabling Stroke

30-Day Safety and Procedure-related Complications

	TAVR (N=864)	SAVR (N=796)	95% CI for Difference
All-cause mortality or disabling stroke	2.8	3.9	-2.8, 0.7
All-cause mortality	2.2	1.7	-0.9, 1.8
Disabling stroke	1.2	2.5	-2.6, 0.1
All stroke	3.4	5.6	-4.2, -0.2
Overt life-threatening or major bleeding	12.2	9.3	-0.1, 5.9
Transfusion of PRBCs* - n (%)			
0 units	756 (87.5)	469 (58.9)	24.4, 32.5
2 – 4 units	48 (5.6)	136 (17.1)	-14.5, -8.5
≥ 4 units	31 (3.6)	101 (12.7)	-11.7, -6.5
Acute kidney injury, stage 2-3	1.7	4.4	-4.4, -1.0
Major vascular complication	6.0	1.1	3.2, 6.7
Cardiac perforation	1.7	0.9	-0.2, 2.0
Cardiogenic shock	1.1	3.8	-4.2, -1.1
Permanent pacemaker implant	25.9	6.6	15.9, 22.7
Atrial fibrillation	12.9	43.4	-34.7, -26.4

*Percentage rates, all others are Bayesian rates

TAVR Clinical Evidence

Upcoming TAVI trials: rationale, design and impact on clinical practice

Davide Capodanno1*, MD, PhD; Martin B. Leon2, MD

19 Additional Studies!

1. Cardio-Thoracic-Vascular Department, Ferrarotto Hospital, University of Catania, Catania, Italy; 2. Columbia University Medical Center and Cardiovascular Research Foundation, New York, NY, USA

Simplifying TAVR DIRECT EASY TAVI

Expanding Indications

NOTION 2 EARLY TAVR Optimizing Outcomes ACTIVATION REDUCE AKI SENTINEL REFLECT

Capodanno D and Leon MB. EuroIntervention 2016;12:Y1-Y5.

TAVR Clinical Evidence

Upcoming TAVI trials: rationale, design and impact on clinical practice

Davide Capodanno1*, MD, PhD; Martin B. Leon2, MD

19 Additional Studies!

1. Cardio-Thoracic-Vascular Department, Ferrarotto Hospital, University of Catania, Catania, Italy; 2. Columbia University Medical Center and Cardiovascular Research Foundation, New York, NY, USA

Anti-thrombotic Therapy

ARTE POPULAR TAVI AUREA AVATAR GALILEO ATLANTIS Valve Leaflet Thickening/ Thrombosis

RESOLVE SAVORY EVOLUT R Low Risk PARTNER 3 PORTICO IDE

Capodanno D and Leon MB. EuroIntervention 2016;12:Y1-Y5.

PCR

Transcatheter aortic valve implantation for failed surgical aortic bioprostheses using a self-expanding device: early results from the prospective VIVA postmarket study

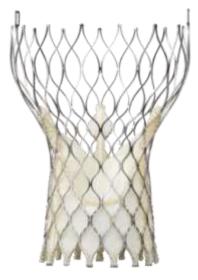
Prof. Ran Kornowski, Rabin Medical Center, Petah Tikva, Israel

Dr. Didier Tchétché, Clinique Pasteur, Toulouse, France

Prof. Jean-Philippe Verhoye, CHU Rennes, Rennes, France

Dr. Bernard Chevalier, Institut Cardio-vasculaire Paris-Sud, Massy, France

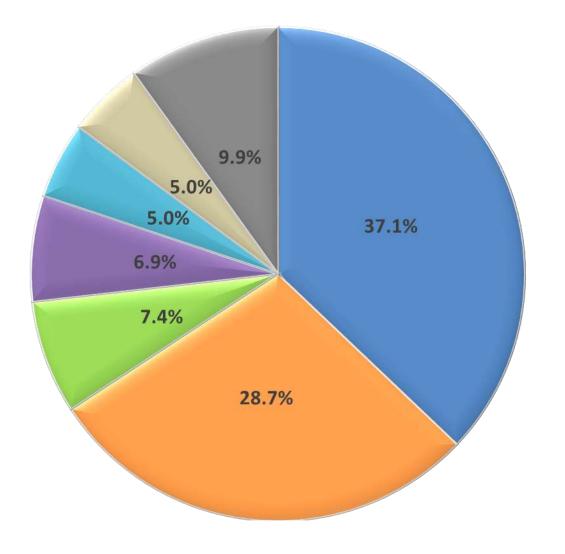
and on behalf of the VIVA Investigators


Baseline Characteristics

Characteristic	All (N=202)
Age (yrs)	79.9 ± 7.2
Men	47.0
Height (cm)	164.3 ± 9.1
Weight (kg)	73.7 ± 16.3
BMI (kg/m²)	27.2 ± 5.4
BSA (m²)	1.8 ± 0.2
LogEuroSCORE (%)	25.0 ± 14.3
STS score (%)	6.6 ± 5.1
Diabetes mellitus	26.2
Peripheral vascular disease	13.9
Chronic renal replacement therapy	1.5
Previous stroke	5.0
NYHA III/IV	70.7
LVEF % (n)	61.0 ± 12.0 (157)

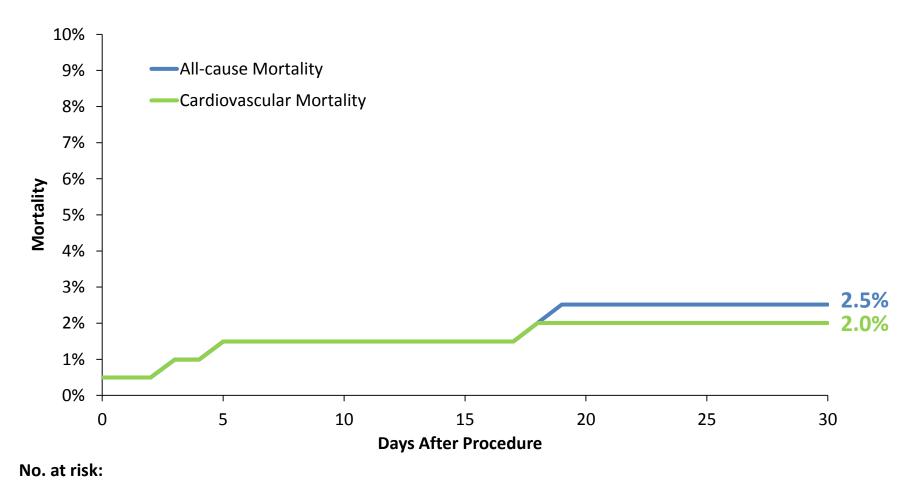
Values are mean ± SD or %.

Devices Utilized



CoreValve Enrolled: n=19 Evolut R Enrolled: n=183

Surgical Valve Types



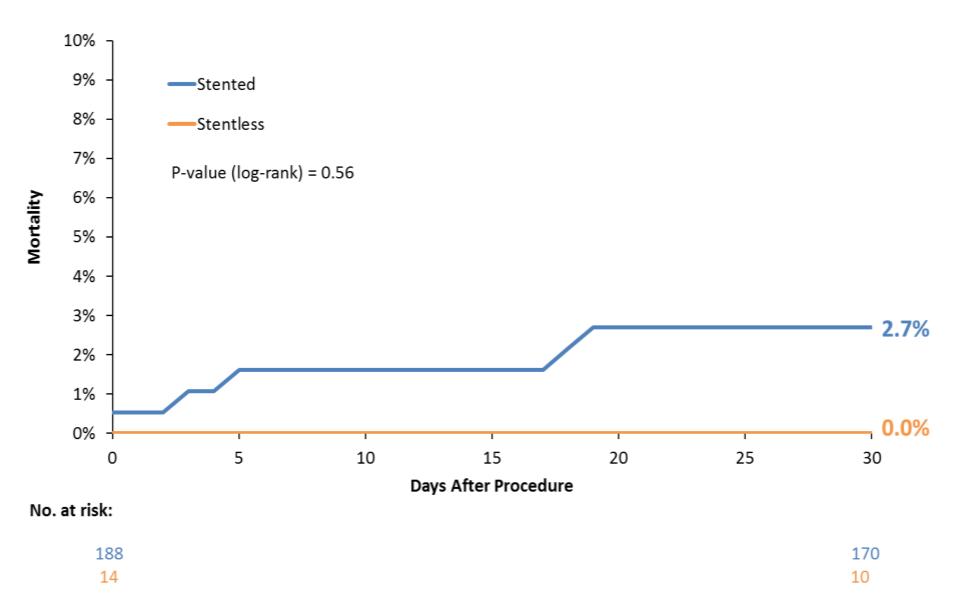
📕 Mitroflow

- 🞽 Perimount/Magna
- Carpentier/Edwards/Porcine
- I Stentless
- Hancock/Hancock II
- 屋 Trifecta
- 🛯 Other

Primary Endpoint: Cardiovascular Mortality at 30 Days

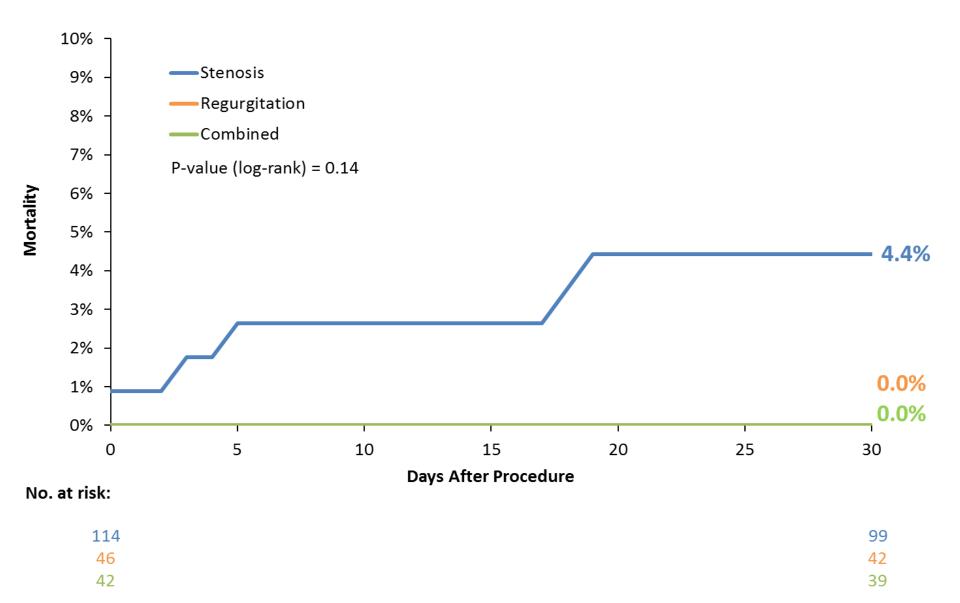
180

202

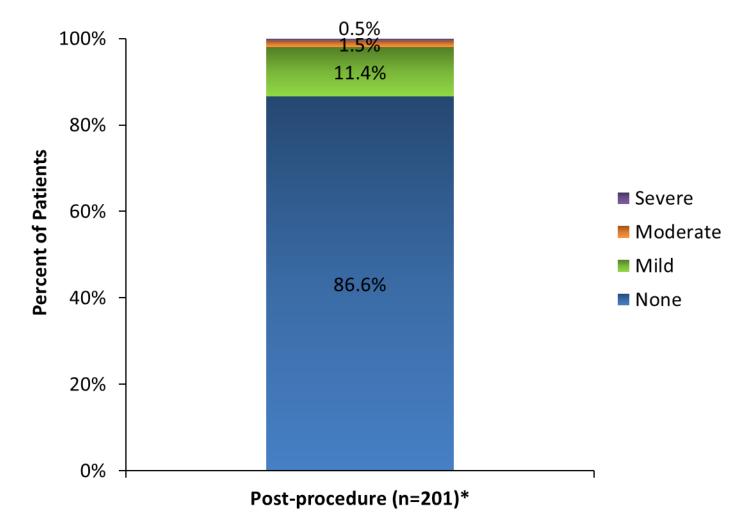

Other Clinical Outcomes at 30 Days

Endpoint	All (N=202)
Duration of hospital stay, days (mean ± SD)	7.4 ± 6.1
All stroke (%)	3.0
Disabling (%)	0.0
Major vascular complication (%)*	6.5
Bleeding (%)*	14.9
Life-threatening	0.0
Major	7.0
Minor	7.9
Acute kidney injury (%)*	0.5
Stage I	0.5
Stage II or III	0.0
Permanent pacemaker implantation (%) [£]	7.0

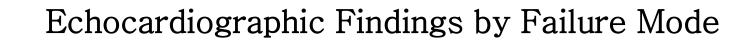
Kaplan-Meier event rates. *According to the Valve Academic Research Consortium 2 (VARC-2) definition [£]Baseline pacemaker included

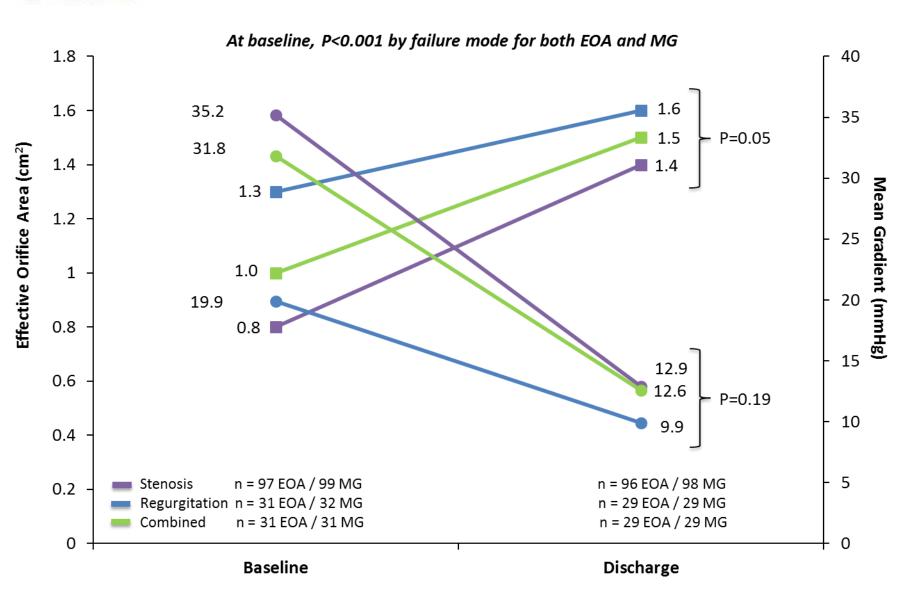


Mortality by Surgical Valve Type



Mortality by Failure Mode





Paravalvular Regurgitation

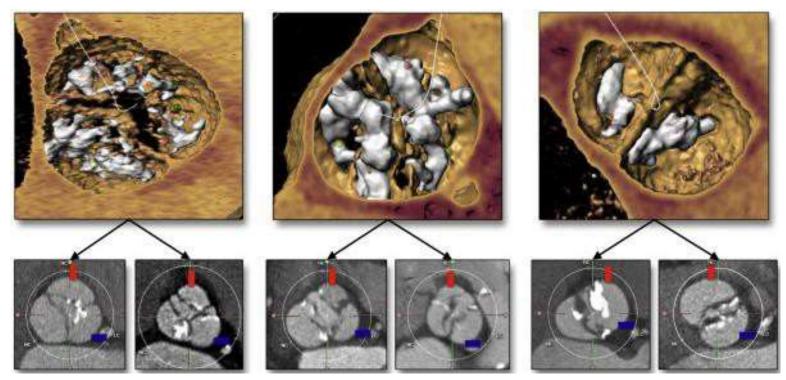
Official assessments based on site post-procedure aortography data ; core lab data pending *Unable to assess PVL in 1 subject

Echo Core Lab confirmed data

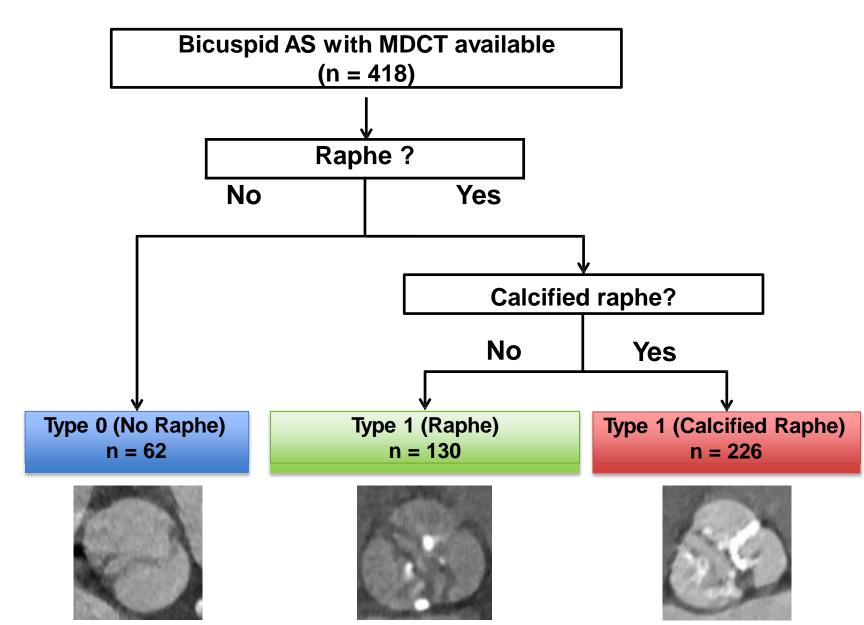
euro

R

The Impact of Bicuspid Aortic Valve Morphology on Outcomes After TAVI

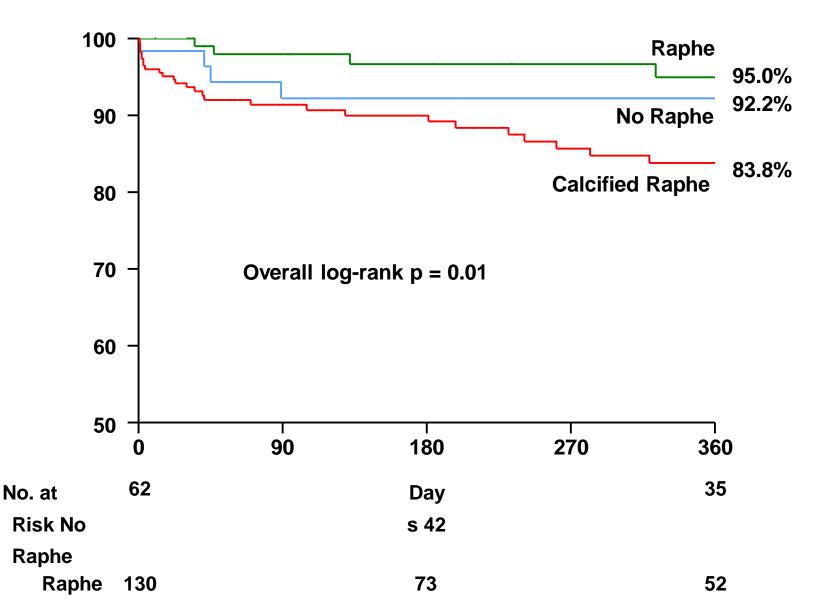

Sung-Han Yoon, MD On Behalf of Bicuspid AS TAVR Registry

Bicuspid AV Morphology

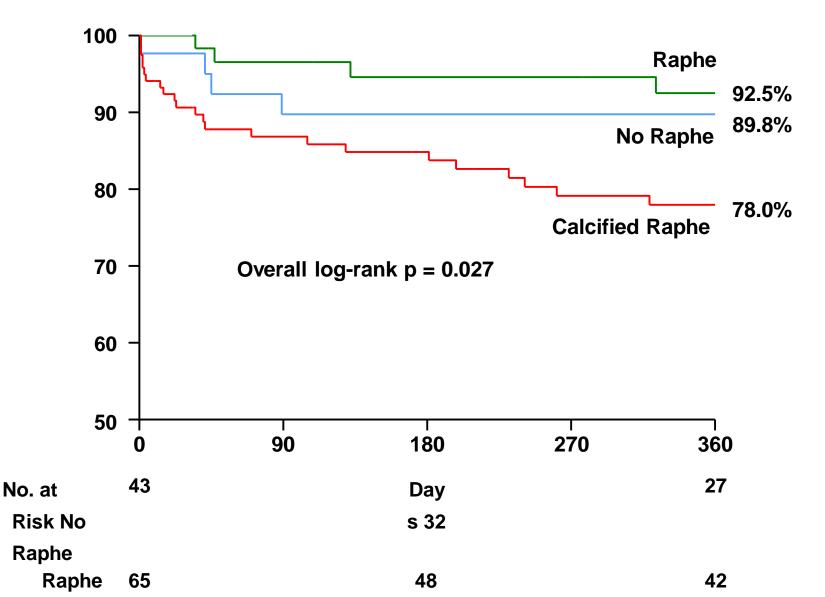


Hasan Jilaihawi et al; JACC: Cardiovascular Imaging, Volume 9, Issue 10, 2016, 1145–1158

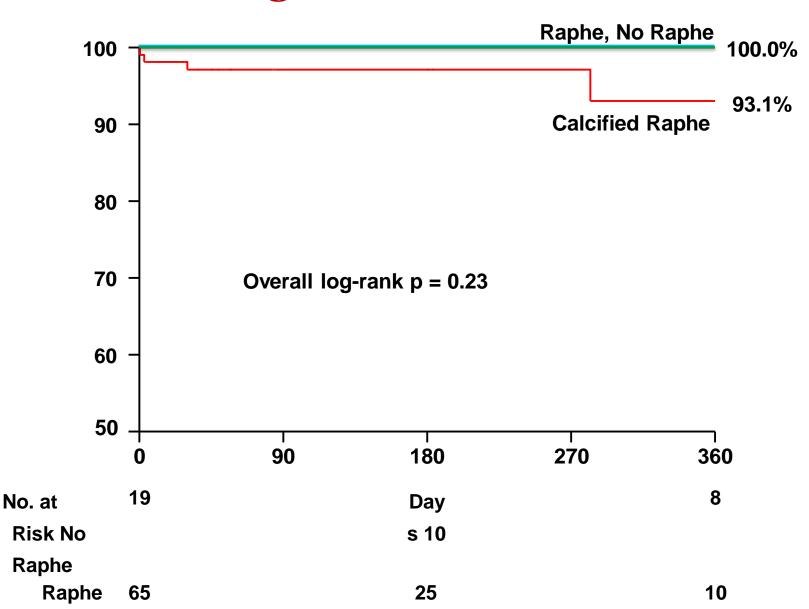
We aimed to investigate the association between Bicuspid AS morphology and clinical outcomes after TAVI



Study Design



Cumulative Survival at 1 Year Overall Cohort

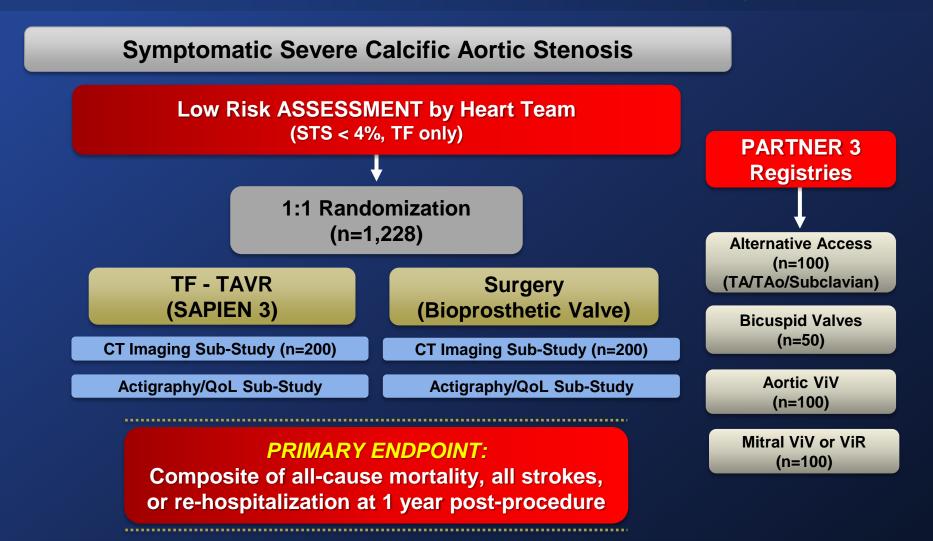


Cumulative Survival at 1 Year Early-generation Devices

Cumulative Survival at 1 Year New-generation Devices

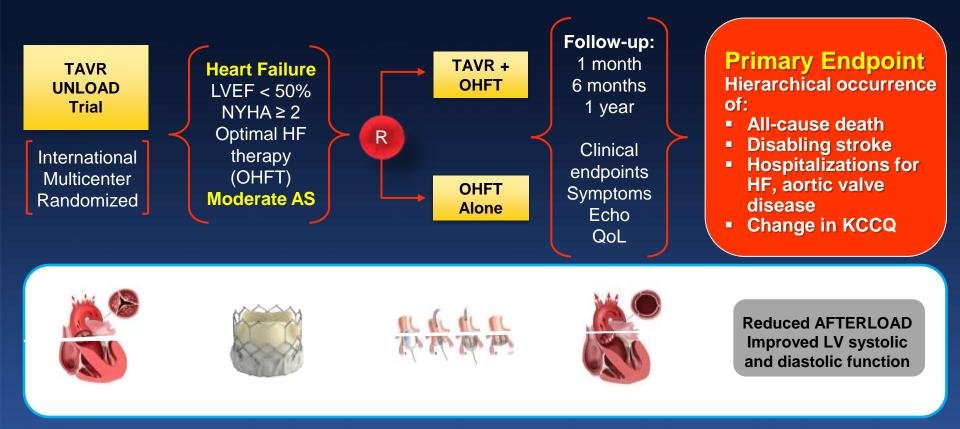
Cerebral Embolic Protection Devices

TriGuard™ Cerebral	Embrella™	Claret Sentinel™
Deflector	Deflector	Dual Filter
Femoral Access	Radial Access	Radial Access
9F Sheath (7F Delivery)	6F Shuttle Sheath	6F Radial Sheath


EPD in TAVR: Meta-Analysis

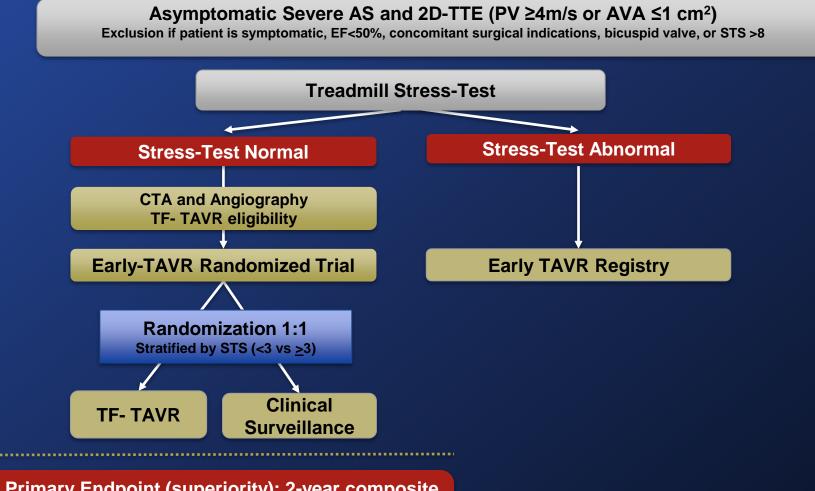
Α				1	0-dav	Stroke		С			Nu	mber	of L	esio	ns pe	er Patient		
~	EPD		Non-EP			Risk Ratio	Risk Ratio	•		EPD		Non	-EPD		Std	Mean Difference	Std. Mean Diff	ference
tudy or Subgroup				-	Weight #	KISK KALIO I-H, Random, 95% CI	M-H, Random, 95% CI	Study or Subgroup	Mean		otal			al We		Random, 95% Cl	IV, Random, S	
Randomized studies	5						1	Randomized studies							-			
Wendt et al 2015	0	14	0	16		Not estimable		Wendt et al 2015	23	12	14	31	1. 1	16 1	5.08 -4	0.71[-1.45, 0.03]		
an Mieghern et al 2016	0	32	2	33	4.2%	0.21 [0.01, 4.13]			- 1 - P	2.56		3.73				0.39 [-1.05, 0.28]		
Lansky et al 2015	2	46	2	39	10.3%	0.85 [0.13, 5.74]		Van Mieghem et al 2015*										
Haussig et al 2016		50	-4		21.3%	1.00 [0.26, 3.78]		Haussig et al 2016				16.67 1				99 [-1.42, -0.56]		
(apadia et al 2016† Subtotal (95% CI)	13	231 373	10		59.9% 95.7%	0.62 [0.28, 1.37] 0.68 [0.36, 1.27]	-	Kapadia et al 2016 Subtotal (95% CI)	5	1177	91 176	5.67				0.11 [-0.40, 0.17] 53 [-1.02, -0.04]	•	
Total events Heterogeneity: Tau ² = 0.00 Test for overall effect: Z =			18 = 3 (P =	0.795) ² = 0%			Heterogeneity: $Tau^2 = 0.18$, Test for overall effect: $2 = 2$		STATE 1210	• 3	7 + 0.00	£; F = 75	3				
Non-randomized co	mparativ	e studie	5					Non-randomized con	ngarati	ve studie	5							
Samim et al 2015	0		0	37		Not estimable		Rodés-Cabau et al 2014	10000			4.67 4	444	6 1	2.4%	0.441-0.44.1.311	-	
Rodés-Cabau et al 2014	2	41	0	11	4 3%	1.43 10.07, 27,781												
Subtotal (95% CI) Total events		56	ò	48	4.3%	1,43 [0.07, 27,78]		Samim et al 2015 Subtotal (95% CI)	0.55	5.926	49	4.67 3		17 1 13 2		0.81 [0.19, 1.43] 0.69 [0.18, 1.19]		•
Heterogeneity: Not applical Test for overall effect: 2 =		0.81)						Heterogeneity: Tau ² = 0.00; Test for overall effect: 2 = 2		2.2.2	19	* 0.491;	f = 0%					
Total (95% CI)		429		296	100.0%	0.70 [0.38, 1.29]	•	Total (95% Cb			225		2	7 10	1.0N -	0.19 -0.71. 0.34	-	
																CONTRACTOR OF A	1	
feterogeneity: Tau ² = 0.00 est for overall effect: Z =	1.14 (P =	0.26)				0.01	0.1 1 20 10 Favours (EPD) Favours (Non-EPD)	Heterogeneity, Tau ¹ = 0.33; Test for overall effect: 2 = 0 Test for subgroup difference	70 P -	0.491							-4 -2 0 Favours (EPO) Fa	ý vours (Non-EPC
Heterogeneity: Tau ² = 0.04 Fest for overall effect: Z = Fest for subgroup difference); Chi ² = 1 1.14 (P =	0.26)	= 4 (P =	= 0.63	31, 1 ⁴ + 0%			Test for overall effect. 2 = 0. Test for subgroup difference	70 P -	= 0.49) = 11.46,	đ =]	(P = 0.0	0071, 1	91.33		per Patien	0.0000000000000000000000000000000000000	ş vaurs (Non-EPC
Heterogeneity: Tau ² = 0.04 Test for overall effect: Z = Test for subgroup difference); Chi ² = 1 1.14 (P =	0,26) 0.23, 0	= 4 (P =	- 0.63 3	31, 1 ⁴ + 0%			Test for overall effect. 2 = 0	70 P -	= 0.49) = 11.46,	đ =]	(∦ = 0.0 Volu	0071, 1	91.33		per Patien Std. Mean Difference	•	
Heterogeneity: Tau ² = 0.00 Fest for overall effect: 2 = Fest for subgroup difference B	0; Chi ² = 1 1 14 (P = tes: Chi ² - EPC Events	0.26) 0.23, 0	= 4 (P = f = 1 (P Non-E	- 0.63 3	31, I ⁴ • 0% 8 0-day	Mortality	Favours [EPD] Favours [Non-EPD]	Test for overal effect. 2 = 0 Test for subgroup difference D Study or Subgroup	.70 (P = 5: Chi ² Mean	= 0.49) = 11.46, To EPD	đ =]	l (P ≈ 0.0 Volu	0071, 1 ⁴ = me of Non-EPO	9133 F Le:	sions		t Std. Mean D	ifference
Heterogeneity, Tau ² = 0.00 Fest for overall effect: Z = Fest for subgroup differenc B Study or Subgroup Randomized studie	0; Chi ² = 1 1 14 (P = tes: Chi ² - EPC Events	0.26) 0.23, 0	= 4 (P = f = 1 (P Non-E	- 0.63 3	31, I ⁴ + 036 6 0-day Weight	Mortality Risk Ratio M-H, Random, 95% Cl	Favours (EPD) Favours (Non-EPD) Risk Ratio	Test for overal effect 2 = 0 Test for subgroup difference D Study or Subgroup Randomized studies	.70 (Ρ 5. Οι ³ Mean	= 0.49) = 11.46, TC EPD 50	d = 1 tal Tota	l (P = 0.0 Volu I Mean	007), i ² - me of Non-EPD SI	91.3 F Le:) Tota	sions I Weight	Std. Mean Difference IV, Random, 95% C	t Std. Mean D 1 IV, Random	ifference
Heterogeneity: Tau ² = 0.00 Fest for overall effect: Z = Fest for subgroup difference B Study or Subgroup Randomized studie Haussig et al 2016	0; Chi ² = 1 1.14 (P = tes: Chi ² = Events Is	0.26) 0.23, 0 Total	= 4 (P = f = 1 (P Non-E Events	- 0.63 3 EPD Total 50	31, 1 ² + 03; 60-day Weight 10, 8%	Mortality Risk Ratio M-H, Random, 95% Cl 0.33 (0.01, 7.99) —	Favours (EPD) Favours (Non-EPD) Risk Ratio	Test for overall effect 2 = 0 Test for subgroup difference D Study or Subgroup Randomized studies Wendt et al 2015	.70 (Ρ - 5 Ch ² Mean	0.49) = 11.46, EPD 50 60	f = 1 tal Tota	1 (P = 0.0 Volu d <u>Mean</u> 4 168	0071, 1 ² - me of Non-EPO SI 21	91.33 F Le: 0 Tota 7 1	sions I Weight 6 7.1%	Std. Mean Difference IV, Random, 95% C -0.47 (-1.20, 0.25	t Std. Mean D I IV, Random	ifference
Heterogeneity: Tau ² = 0.00 Fest for overall effect: 2 = Test for subgroup differenc B Study or Subgroup Randomized studie Haussig et al 2016 Lansky et al 2015	0; Chi ² = 1 1.14 (P = tes: Chi ² - Events ts 0	0.26) 0.23, c Total 50 46	= 4 (P = f = 1 (P Non-E	= 0.63 3 700 70tal 50 39	31, 1 ² + 03; O-day Weight 10, 85; 19, 53;	Mortality Risk Ratio M-H, Random, 95% Cl	Favours (EPD) Favours (Non-EPD) Risk Ratio	Test for overall effect 2 = 0 Test for subgroup difference D Study or Subgroup Randomized studies Wendt et al 2015 Van Wieghem et al 2016	70 (P - 5 Ch ² Mean 88 120.67	= 0.49) = 11.46, EPD = 50 60 182.96	f = 1 tal Tota 1 2	1 (P = 0.0 Volu 1 Mean 4 168 2 272 33	007), I ⁴ = me of Kon-EPO SI 21 318.5	91.33 F Le: 7 10 7 11 2 11	sions 4 Weight 6 7.1X 5 8.4X	Std. Mean Difference IV, Random, 95% C -0.47 (-1.20, 0.25 -0.60 (-1.27, 0.07	t Std. Mean D I IV, Random	ifference
feterogeneity: Tau ² = 0.00 fest for overall effect: 2 = fest for subgroup difference B Study or Subgroup Randomized studie Haussig et al 2016 Lansky et al 2015 Van Mieghem et al 2015	0; Chi ² = 1 1.14 (P = tes: Chi ² - EP(Events 15 0 1 1	0.26) 0.23, 0 Total 50 46	= 4 (P = f = 1 (P Non-E Events 1 2	= 0.63 3 PD Total 50 39 33	31, 1 ⁴ + 03; O-day Weight 10, 8% 19, 5%	Mortality Risk Ratio M-H, Random, 95% Cl 0.33 (0.01, 7.99) 0.42 (0.04, 4.50)	Favours (EPD) Favours (Non-EPD) Risk Ratio	Test for overall effect: 2 = 0 Test for subgroup difference D Study or Subgroup Randomized studies Wendt et al 2015 Van Wieghent et al 2016	70 (P - 5 Chi ³ Mean 88 120 67 466	0,49) = 11.46, EPD 50 182.96 652.99	ff = 1 tal Tota 1 2 4	1 (P = 0.0 Volu 1 Mean 4 168 2 272 33 9 800	0071, 1 ⁴ = me of Si Si Si Si Si Si Si Si Si Si Si Si Si	9133 F Le: 7 10 2 11 3 40	sions 8 Weight 6 7.1% 5 8.4% 5 22.8%	Std. Mean Difference Nr, Random, 95N C -0.47 (-1.20, 0.25 -0.60 (-1.27, 0.07 -0.30 (-0.70, 0.11	t Std. Mean D I IV, Random	ifference
teterogeneity: Tau ² = 0.00 est for overall effect: Z = fest for subgroup difference B Study or Subgroup Randomized studie Haussig et al 2016 Lansky et al 2016 Van Mieghem et al 2016	0; Chi ² = 1 1.14 (P = tes: Chi ² - EP(Events 15 0 1 1	0.26) 0.23, 0 Total 50 46 32	= 4 (P = f = 1 (P Non-E Events 1 2 3	= 0.63 3 PD Total 50 39 33 111	31, 1 ² • 03; 0-day Weight 10.8% 19.5% 22.3%	Mortality Risk Ratio M-H, Random, 95% Cl 0.33 (0.01, 7.99) 0.42 (0.04, 4.50) 0.34 (0.04, 3.13)	Favours (EPD) Favours (Non-EPD) Risk Ratio	³ Test for overall effect: 2 = 0 Test for subgroup difference D Study or Subgroup Randomized studies Wendt et al 2015 Van Weghem et al 2016 Haussg et al 2016 Kapada et al 2016	70 (P - 5 Chi ³ Mean 88 120 67 466	= 0.49) = 11.46, EPD = 50 60 182.96	f = 1 tal Tetu 1 2 4 9	1 (P = 0.0 Volu 4 168 2 272.33 9 800 1 424.97	007), I ⁴ = me of Kon-EPO SI 21 318.5	9133 FLes 7 10 2 12 3 45 1 9	sions 8 Weight 5 8.4% 5 22.8% 8 46.3%	Std. Mean Difference N. Random, 95% C -0.47 (-1.20, 0.25 -0.60 (-1.27, 0.07 -0.30 (-0.70, 0.11 -0.08 (-0.36, 0.21	t Sid. Kean D I N, Random	ifference
feterogeneity: Tau ² = 0.00 fest for overall effect: 2 = fest for subgroup difference B Randomized studie Haussig et al 2016 Lansky et al 2016 Jan Mieghem et al 2016 Kapadia et al 2016 Subtotal (95% CI) Total events	5; Chi ² = : 114 (P = tes: Chi ² - EP(Events 15 0 1 1 3 5	0.26) 0.23, (Total 50 46 32 234 362	= 4 (P = f = 1 (P Non-E Events 1 2 3 2 8	- 0.63 3 FPD Total 50 39 33 111 233	31, 4 = 05 O-day Weight 10,8% 19,5% 22,3% 34,5% 87,0%	Mortality Risk Ratio M-H, Random, 95% Cl 0.33 (0.01, 7.99) - 0.42 (0.04, 4.50) 0.34 (0.04, 3.13) 0.71 (0.12, 4.20)	Favours (EPD) Favours (Non-EPD) Risk Ratio	Test for overall effect: 2 = 0 Test for subgroup difference D Study or Subgroup Randomized studies Wendt et al 2015 Van Wieghent et al 2016	70 (P - 5 Chi ³ Mean 88 120 67 466	0,49) = 11.46, EPD 50 182.96 652.99	ff = 1 tal Tota 1 2 4	1 (P = 0.0 Volu 4 168 2 272.33 9 800 1 424.97	0071, 1 ⁴ = me of Si Si Si Si Si Si Si Si Si Si Si Si Si	9133 FLes 7 10 2 12 3 45 1 9	sions 8 Weight 5 8.4% 5 22.8% 8 46.3%	Std. Mean Difference Nr, Random, 95N C -0.47 (-1.20, 0.25 -0.60 (-1.27, 0.07 -0.30 (-0.70, 0.11	t Sid. Kean D I N, Random	ifference
Heterogeneity: Tau ² = 0.00 Fest for overall effect: Z = Test for subgroup difference B Study or Subgroup Randomized studie Haussig et al 2016 Lansky et al 2016 Kapadia et al 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0	0; Chi ² = 1 1 14 (P = res: Chi ² - EP(Events 1 1 3 5 0; Chi ² =	0.26) 0.23, 0 Total 50 46 32 234 362 0.34, d	= 4 (P = f = 1 (P Non-E Events 1 2 3 2 8	- 0.63 3 FPD Total 50 39 33 111 233	31, 4 = 05 O-day Weight 10,8% 19,5% 22,3% 34,5% 87,0%	Mortality Risk Ratio M-H, Random, 95% Cl 0.33 (0.01, 7.99) - 0.42 (0.04, 4.50) 0.34 (0.04, 3.13) 0.71 (0.12, 4.20)	Favours (EPD) Favours (Non-EPD) Risk Ratio	³ Test for overall effect: 2 = 0 Test for subgroup difference D Study or Subgroup Randomized studies Wendt et al 2015 Van Weghem et al 2016 Haussg et al 2016 Kapada et al 2016	(0) (P = 5 Ch ² 88 120,67 466 383.2	• 0.49) = 11.46, FC EPD • 50 182.96 652.99 540.26 2.84, cf +	ff =] tal Tota 2 4 9 17	1 (P = 0.0 Volu 4 168 2 272 33 9 800 1 424 97 6	0071, 1 ⁴ - me of Si 21 318.5 1,466.5 567.4	9133 FLes 7 10 2 12 3 45 1 9	sions 8 Weight 5 8.4% 5 22.8% 8 46.3%	Std. Mean Difference N. Random, 95% C -0.47 (-1.20, 0.25 -0.60 (-1.27, 0.07 -0.30 (-0.70, 0.11 -0.08 (-0.36, 0.21	t Sid. Kean D I N, Random	ifference
Heterogeneity: Tau ² = 0.00 Fest for overall effect: Z = Fest for subgroup difference B Study or Subgroup Randomized studie Haussig et al 2016 Lansky et al 2016 Kapadia et al 2016 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0	0; Chi ² = 1 1 14 (P = tes: Chi ² + EPR Events 1 1 3 5 0; Chi ² + 1.29 (P -	0.26) • 0.23, o Total 50 46 32 234 362 0.34, d • 0.20)	= 4 (P = f = 1 (P Non-E Events 1 2 3 2 2 8 = 3 (P	- 0.63 3 FPD Total 50 39 33 111 233	31, 4 = 05 O-day Weight 10,8% 19,5% 22,3% 34,5% 87,0%	Mortality Risk Ratio M-H, Random, 95% Cl 0.33 (0.01, 7.99) - 0.42 (0.04, 4.50) 0.34 (0.04, 3.13) 0.71 (0.12, 4.20)	Favours (EPD) Favours (Non-EPD) Risk Ratio	Test for overall effect: 2 = 0 Test for subgroup difference D Study or Subgroup Randomized studies Wendt et al 2015 Van Wieghent est al 2016 Kapasta et al 2016 Subtotal (95% CI) Heterogenethy Taz ² = 0.00 Test for overall effect: 2 = 2	170 (P - es Chi ² Mean 88 120,67 456 383.2 (Chi ² = 104 (P -	• 0.49) = 11.46, EPD • 50 • 60 182.96 • 652.99 540.26 • 540.26 • 0.04)	ff =] tal Tota 2 4 9 17	1 (P = 0.0 Volu 4 168 2 272 33 9 800 1 424 97 6	0071, 1 ⁴ - me of Si 21 318.5 1,466.5 567.4	9133 FLes 7 10 2 12 3 45 1 9	sions 8 Weight 5 8.4% 5 22.8% 8 46.3%	Std. Mean Difference N. Random, 95% C -0.47 (-1.20, 0.25 -0.60 (-1.27, 0.07 -0.30 (-0.70, 0.11 -0.08 (-0.36, 0.21	t Sid. Kean D I N, Random	ifference
Heterogeneity: Tau ² = 0.00 Fest for overall effect: 2 = Test for subgroup difference B Study or Subgroup Randomized studie Haussig et al 2016 (ansky et al 2015 Van Mieghem et al 2016 Subtotal (95% Ct) Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: 2 = Non-randomized of	0; Chi ² = 1 1 14 (P = tes: Chi ² + EPR Events 1 1 3 5 0; Chi ² + 1.29 (P -	0.26) • 0.23, c Total 50 46 32 234 362 0.34, ct • 0.20) we studi	= 4 (P = f = 1 (P Non-E Events 1 2 3 2 2 8 = 3 (P	- 0.63 3 50 39 33 111 233 - 0.95	31, 4 = 05 O-day Weight 10,8% 19,5% 22,3% 34,5% 87,0%	Mortality Risk Ratio M-H, Random, 95% Cl 0.33 (0.01, 7.99) - 0.42 (0.04, 4.50) 0.34 (0.04, 3.13) 0.71 (0.12, 4.20)	Favours (EPD) Favours (Non-EPD) Risk Ratio	Test for overall effect: 2 = 0 Test for subgroup difference D Study or Subgroup Randomized studies Wandt et al 2015 Van Wegtent et al 2016 Kapasta et al 2016 Subtotal (95% Cf) Heterogeneth; Taa ² = 0.00, Test for overall effect: 2 = 2 Non-randomized con	70 φ : 5: Ch ² Mean 88 120,67 466 383,2 (Ch ² + Ch ² 120,67 466 383,2 120,67 466 383,2 120,67 466 383,2 120,67 466 383,2 120,67 466 383,2 120,67 466 383,2 120,67 466 383,2 120,67 466 383,2 120,67 466 383,2 120,67 466 383,2 120,67 466 383,2 120,67 466 383,2 120,67 466 383,2 120,67 466 120,67 466 120,67 466 120,67 466 120,67 466 120,67 466 120,67 1	• 0.49) = 11.46, EPD • 50 182.96 652.99 540.26 2.84, cf. • • 0.04) ve studies	df = 1 tal 1 2 4 9 17 3 (P	1 (P = 0.0 Volu 4 168 2 272 33 9 800 1 424 97 6 • 0.421 P	007L H = me of Kon-EPO 51 318.5 1,466.5 567.4 = 0%	9133 f Le: 7 19 2 17 1 9 17	sions 8 Weight 5 8 40 5 22 80 8 46 30 4 84 85	Sod. Mean Ofference N, Random, 95% C -0.60[-127, 0.07 -0.30[-0.70, 0.11 -0.08[-0.36, 0.21 -0.22[-0.48, -0.01	t Sid. Kean D I IV, Randon I	ifference
Heterogeneity Tau ² = 0.00 Fest for overall effect: 2 = Fest for subgroup difference B Study or Subgroup Randomized studie Haussig et al 2016 Lansky et al 2016 Lansky et al 2015 Subtotal (95% CI) Total events Heterogeneity Tau ² = 0.0 Test for overall effect: 2 = Non-randomized of Sanim et al 2015 Sanim et al 2015 Rode's-Canau et al 2014	0; Chi ² = 1 1 14 (P = ces: Chi ² + EPC Events 1 1 3 5 0; Chi ² + 1, 29 (P + omparati	0.26) • 0.23, c Total 50 46 32 234 362 0.34, d • 0.25 we studi 15	= 4 (P = f = 1 (P Non-E Events 1 2 3 2 2 8 = 3 (P es	- 0.63 3 50 39 33 111 233 - 0.95	31, 1 ² = 05 O-day Weight 10, 8% 19, 5% 22, 3% 34, 5% 87,0% 13, 0%	Mortality Risk Rafio M-H, Random, 95% Cl 0.33 (0.01, 7.99) 0.42 (0.04, 4.50) 0.34 (0.04, 3.13) 0.71 (0.12, 4.20) 0.48 (0.16, 1.46)	Favours (EPD) Favours (Non-EPD) Risk Ratio	Test for overall effect: 2 = 0 Test for subgroup difference D Study of Subgroup Randomized studies Wendt et al 2015 Van Weghem et al 2016 Haussig et al 2016 Subtotal (95% CI) Heterogenethy, Taa ² = 0.00 Test for overall effect: 2 = 2 Non-caedomized con Rodér-Cabau et al 2014	70 φ ss Chi ² 88 120.67 466 383.2 (Chi ² + 104 φ mparati 365	• 0, 49] = 11 46, Fo EPD • 60 182 96 652 99 540 26 2 84, df + • 0.04) ve studies 392 593	ff = 1 tal Totu 1 2 4 9 17 3 (P	1 (P = 0.0 Volu 4 168 2 272 33 9 800 1 424 97 6 • 0 421 P 4 456 67	007[1 ² = me of Kon-EPO 51 31855 1,4665 567.4 + 0% 770.3	913 f Le: f Le: f 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9	sions 4 Weight 5 7 1% 5 8 4% 5 8 4% 5 8 4% 6 5.0%	Sod. Mean Ofference N, Random, 95% C -0.47 [-120, 025 -0.60[-127, 007 -0.30 [-0.70, 011 -0.06 [-0.36, 021 -0.22 [-0.43, -0.01 -0.22 [-0.43, -0.01	t Sid. Kean D I N, Random	ifference
Heterogeneity: Tau ² = 0.00 Test for overall effect: Z = Test for subgroup difference B Study or Subgroup Randomized studie Haussig et al 2016 Lansky et al 2015 Van Mieghem et al 2016 Kapadia et al 2015 Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Non-randomized o Samim et al 2015 Rodés-Canaou et al 2014 Subtotal (95% CI)	0; Chi ² = : 114 (P = res: Chi ² + EPC Events is 0 1 1 3 5 0; Chi ² = : 129 (P - 0 mparati 0 3	0.26) • 0.23, c Total 50 46 32 234 362 0.34, d • 0.20 we studi 15	= 4 (P = f = 1 (P Non-E Events 1 2 3 2 3 2 8 = 3 (P *	- 0.63 3 50 39 33 111 233 - 0.95 37	31, 1 ² = 05 O-day Weight 10, 8% 19, 5% 22, 3% 34, 5% 87,0% 13, 0%	Mortality Risk Ratio M-H, Random, 95% CI 0.33 [0.01, 7.99] - 0.42 [0.04, 4.50] 0.34 [0.04, 3.13] 0.71 [0.12, 4.20] 0.48 [0.16, 1.46] Not estimable	Favours (EPD) Favours (Non-EPD) Risk Ratio	Test for overall effect: 2 = 0 Test for subgroup difference D Study of Subgroup Randomized studies Wendt et al 2015 Van Weghem et al 2016 Haussig et al 2016 Subtotal (95% CI) Heterogenethy, Taa ² = 0.00 Test for overall effect: 2 = 2 Non-caedomized con Rodér-Cabau et al 2014	70 φ ss Chi ² 88 120.67 466 383.2 (Chi ² + 104 φ mparati 365	• 0.49) = 11.46, EPD • 50 182.96 652.99 540.26 2.84, cf. • • 0.04) ve studies	ff = 1 tal Totu 1 2 4 9 17 3 (P	1 (P = 0.0 Volu 4 168 2 272 33 9 800 1 424 97 5 = 0.421 P 4 458 67 5 179.8	007L H = me of Kon-EPO 51 318.5 1,466.5 567.4 = 0%	913 f Ler f Ler f 1 2 2 2 2 3 4 1 3 17 17 7 1 9 3	sions 4 Weight 5 7 1% 5 84% 5 84% 5 84% 6 5.0% 7 10.4%	Sod. Mean Ofference N, Random, 95% C -0.60[-127, 0.07 -0.30[-0.70, 0.11 -0.08[-0.36, 0.21 -0.22[-0.48, -0.01	t Std. Mean D IN, Random	ifference
tetarogeneity. Tau ² = 0.00 test for overall effect: Z = Test for subgroup difference B Study or Subgroup Randomized studie Haussig et al 2016 (ansky et al 2016 (ansky et al 2016 Subtotal (95% CI) Total events Heterogeneity. Tau ² = 0.0 Test for overall effect Z = Non-randomized o Santim et al 2015 Subtotal (95% CI) Total events Heterogeneity. Not applicat	0; Chi ² = 1 1 14 (P = res: Chi ² + EPC Events 1 1 1 3 5 0; Chi ² + 1 29 (P - 0 3 sble	0.26) 0.23, c 7 Total 50 46 32 234 362 0.34, d 0.20) 15 41 56	= 4 (P = f = 1 (P Non-E Events 1 2 3 2 3 2 8 = 3 (P *	- 0.63 3 50 39 33 111 233 - 0.95 37 11	31, 1 ² = 05 O-day Weight 10, 8% 19, 5% 22, 3% 34, 5% 87,0% 13, 0%	Mortality Risk Ratio M-H, Random, 95% CI 0.32 (0.01, 7.99) 0.42 (0.04, 4.50) 0.34 (0.04, 4.50) 0.34 (0.04, 3.13] 0.71 (0.12, 4.20) 0.48 (0.16, 1.46) Not estimable 2.00 (0.11, 36.09)	Favours (EPD) Favours (Non-EPD) Risk Ratio	Test for overal effect. 2 = 0 Test for subgroup difference D Study or Subgroup Randomized studies Wendt et al 2015 Van Weghen et al 2015 Haussig et al 2016 Kapača et al 2016 Subtatal (95% CI) Heterogenety, Tau ² = 0.00 Test for overal effect. 2 = 2 Non-randomized con Rodes-Cabas et al 2014 Samm et al 2015	70 (P - Mean 88 5 Chi ² 88 5 20 - 466 383 2 120 - 57 120 - 23 120 - 23 120 - 23 120 - 23 120 - 23	 0.49] 11.46, EPO 50 60 182.96 62.99 540.25 2.84, st = 0.04, st = 88.222 0.04, st = 	ff = 1 tal Totu 1 2 4 9 17 3 (P - 3 4 3 4	1 (P = 0.0 Volu 4 168 2 272 33 9 800 1 424 97 6 0 421 (P 4 458.67 5 179.8 9	007[1 ² - me of Kon-EPO 3185 1,4665 567 4 - 0% 770.3 225 1	913 f Ler f Ler f 1 2 2 2 2 3 4 1 3 17 17 7 1 9 3	sions 4 Weight 5 7 1% 5 84% 5 84% 5 84% 6 5.0% 7 10.4%	Sid. Mean Difference N, Random, 95% C -0.47 [-1.20, 0.25 -0.60 [-1.27, 0.07 -0.30 [-0.70, 011 -0.36 [-0.35, 0.22 -0.22 [-0.43, -0.01 -0.20 [-1.06, 0.67 -0.30 [-0.90, 0.30	t Std. Mean D IN, Random	ifference
Haussig et al 2016 Lansky et al 2015 Van Mieghem et al 2016 Kapadia et al 2016 Subtotal (95% CI) Total events Heterogeneity Tau ² = 0.0 Text for overall effect 2 =	0; Chi ² = 1 1 14 (P = res: Chi ² + EPC Events 1 1 1 3 5 0; Chi ² + 1 29 (P - 0 3 sble	0.26) 0.23, c 7 Total 50 46 32 234 362 0.34, d 0.20) 15 41 56	= 4 (P = f = 1 (P Non-E Events 1 2 3 2 3 2 8 = 3 (P *	= 0.65 3 PD Total 50 39 33 111 233 = 0.95 37 11 48	31, 1 ² = 05 O-day Weight 10, 8% 19, 5% 22, 3% 34, 5% 87,0% 13, 0%	Mortality Risk Ratio M-H, Random, 95% CI 0.32 (0.01, 7.99) 0.42 (0.04, 4.50) 0.34 (0.04, 4.50) 0.34 (0.04, 3.13] 0.71 (0.12, 4.20) 0.48 (0.16, 1.46) Not estimable 2.00 (0.11, 36.09)	Favours (EPD) Favours (Non-EPD) Risk Ratio	³ Test for overall effect: 2 = 0 Test for subgroup difference D Study or Subgroup Randomized studies Wendt et al 2015 Van Weghem et al 2016 Haussig et al 2016 Subtotal (95% CI) Heterogeneity: Taa ² = 0.00 Test for overall effect: 2 = 2 Non-candomized con Rudér-Cabau et al 2014 Savite et al 2015 Subtotal (95% CI) Heterogeneity: Taa ² = 0.00 Test for overall effect: 2 = 1	70 (P - Mean 88 5 Chi ² 88 5 20 - 466 383 2 120 - 57 120 - 23 120 - 23 120 - 23 120 - 23 120 - 23	 0.49] 11.46, EPO 50 60 182.96 62.99 540.25 2.84, st = 0.04, st = 88.222 0.04, st = 	d = 1 tal 1 2 4 9 17 3 (P - 4 1 (P)	(P = 0.0 Volu 4 168 2 272 33 9 800 1 424 97 6 • 0 421 P • 4 458.67 5 179.8 9 = 0.853 P	007[1 ² - me of Kon-EPO 3185 1,4665 567 4 - 0% 770.3 225 1	9133 f Le: 0 Tota 7 10 2 12 3 40 17 17 7 1 17 7 1 9 3 4	sions 8 Weight 6 7.1% 5 8.4% 5 2.2% 8 46.3% 4 84.6% 7 10.4% 8 15.4%	Sod. Mean Difference N, Random, 95% C -0.47 [-120, 025 -0.30 [-127, 007 -0.30 [-0.70, 011 -0.06 [-0.56, 021 -0.22 [-0.43, -0.01 -0.22 [-0.43, -0.01 -0.30 [-0.50, 0.30 -0.26 [-0.76, 0.23	t Sid. Kean D I N, Random	ifference
Heterogeneity: Tau ² = 0.00 Fest for overall effect: Z = Test for subgroup difference B Study or Subgroup Randomized studie Haussig et al 2016 (Lansky et al 2016 (Lansky et al 2016) Subtotal (95% CI) Total events Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Non-randomized of Samim et al 2015 Rodés-Cabau et al 2015 Rodés-Cabau et al 2015 Heterogeneity: Not applica Test for overall effect: Z =	0; Ch ² = 1.14 (# = EPC Ch ² + EVEnts 5 0 0 1 1 1.29 (# - 0 0 J 2 (# - 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.26) 0.23, c 7 Total 50 46 32 234 362 0.34, d 0.20) 0.20) 0.20, 15 41 56 c 0.64) 418	= 4 (P = 1	= 0.63 3 FPD Total 50 39 311 213 = 0.95 37 11 48 281	$\frac{1}{100.0\%}$	Mortality Risk Ratio M-H, Random, 95% CI 0.33 [0.01, 7.99] 0.42 [0.04, 4.50] 0.34 [0.04, 3.13] 0.71 [0.12, 4.20] 0.48 [0.16, 1.46] Not estimable 2.00 [0.11, 36.09] 2.00 [0.11, 36.09]	Favours (EPD) Favours (Non-EPD) Risk Ratio	³ Test for overall effect: 2 = 0 Test for subgroup difference D Study or Subgroup Randomized studies Wendt et al 2015 Van Mieghen et al 2016 Kapasia et al 2016 Kapasia et al 2016 Subtotal (95% CI) Heterogenetry Taz ² = 0.00, Test for overall effect: 2 = 2 Non-candomized con Robin-Cabasa et al 2014 Sarbitet al 2015 Subtotal (95% CI) Heterogenetry Taz ² = 0.00, Heterogenetry Taz ² = 0.00, Heterogenetry Taz ² = 0.00, Heterogenetry Taz ² = 0.00, Heterogenetry Taz ² = 0.00, Heterogenetry Taz ² = 0	70 (P + 5 Ch ² 88 120,67 466 383 2 120,67 466 383 2 120,67 466 120,67 120,23 120,23 120,23 120,7	0.49) = 11.46, Fro 50 60 182.94 652.99 540.26 0.04, 0.04	f = 1 tal Tota 2 4 9 17 3 7 7 3 7 7 2 7 22	E (P = 0.0 Volu 4 168 2 272.33 9 500 1 424.97 6 0.421 P 4 458.67 5 179.8 9 9 5	0071 P - me of Kon-EPO SI 211 3125.5 567.4 - 0% 770.3 225.1 - 0%	9133 f Le: 0 Tota 7 10 2 12 3 40 17 17 7 1 17 7 1 9 3 4	sions 8 Weight 6 7.1% 5 8.4% 5 2.2% 8 46.3% 4 84.6% 7 10.4% 8 15.4%	Sid. Mean Difference N, Random, 95% C -0.47 [-1.20, 0.25 -0.60 [-1.27, 0.07 -0.30 [-0.70, 011 -0.36 [-0.35, 0.22 -0.22 [-0.43, -0.01 -0.20 [-1.06, 0.67 -0.30 [-0.90, 0.30	t Sid. Kean D I N, Random	ifference

Bagur, R et al: Stroke. 2017;48:1306-1315


The PARTNER 3 Trial Study Design

Follow-up: 30 days, 6 mos, 1 year and annually through 10 years

TAVR UNLOAD Trial Study Design (600 patients, 1:1 Randomized)


COLUMBIA UNIVERSITY MEDICAL CENTER

- NewYork-Presbyterian

EARLY TAVR Trial Study Flow

Primary Endpoint (superiority): 2-year composite of all-cause mortality, all strokes, and repeat hospitalizations (CV)